TAUTOMERIC EQUILIBRIA IN SOLUTIONS OF THE PRODUCTS OF REACTION BETWEEN 2-AMINOBENZENESULFONAMIDE AND 3-OXO ALDEHYDES

O. A. Maloshitskaya¹, V. V. Alekseev¹, and K. Pihlaja²

Keywords: 2-aminobenzenesulfonamide, benzothiazine, β-keto aldehydes, ring–chain tautomerism.

Recently we observed for the first time a ring–chain tautomeric equilibrium for 3-(2-oxoethyl-2-phenyl)-2H,4H-benzothiazine-1,1-dioxides obtained by reaction of 2-aminobenzenesulfonamide with substituted benzoyl acetic aldehydes [1]. With the aim of studying the characteristics of this tautomeric equilibrium in the case of the aliphatic series of keto aldehydes, and also the effect of the substituent at the α -position of the oxo aldehyde, we have studied the reaction of 2-aminobenzenesulfonamide with β -keto aldehydes **2a-d**.

The reaction products obtained, **3a-d**, immediately after dissolving form a tautomeric mixture, represented by the geometric isomers of the enamine form $A_{E,Z}$. The ratio of *E*- and *Z*-isomers depends significantly on the temperature of the solution. For example, for compound **3a**, $A_E:A_Z = 1:10$ at 25°C and 2.5:10 at 80°C. The presence of a substituent at the α -position of the original β -keto aldehyde, as hypothesized in [2], leads to a significant increase in the A_E form, existing in the *s*-*trans* conformation, which is confirmed by the presence of correlations between the CH₃C= (1.75 ppm, s) and COCH₂CH₃ (2.75 ppm, q) signals in the NOESY spectrum of compound **3b**. Over time, a cyclic benzothiazine tautomer **B** appears in the solutions, which for compounds **3b-d** is represented by two diastereomers. The ring–chain equilibrium is established over a period of 4-5 months at room temperature, or within a few days if the solution is held at 80°C. The ratio of the tautomeric forms $A_E:A_Z:B$ (the contribution from the diastereomers is given in parentheses) in DMSO solutions having reached equilibrium at 80°C is 2:19:79 for compound **3a**, 56:6:38 (19+19) in the case of **3b**, 34:26:41 (24+17) for **3c**, and 54:22:24 (16+8) for **3d**.

2, **3** a $R^1 = CMe_3$, $R^2 = H$; b $R^1 = Et$, $R^2 = Me$; c R^1 , $R^2 = (CH_2)_4$; d R^1 , $R^2 = (CH_2)_3$;

¹ Russian Military Medical Academy, St. Petersburg 194044; e-mail: maloshitskaya@mail.ru. ² University of Turku, Turku FI-20014, Finland. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 309-311, February, 2006. Original article submitted December 13, 2005.

2-Aminobenzenesulfonamide was reacted with β -keto aldehydes according to the procedure described earlier in [1]. The ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 500 (500 MHz and 126 MHz respectively) in DMSO-d6, internal standard TMS. The resonant signals for the benzene ring are not indicated; the R¹ and R² signals are indicated only for the major form.

2-(4,4-Dimethylpent-1-enylamino-3-oxo)benzenesulfonamide (3a). Yield 40%; white crystals; mp 143°C. ¹H NMR spectrum, δ , ppm (*J*, Hz): \mathbf{A}_Z : 1.12 (9H, s, (CH₃)₃); 5.64 (1H, d, $J_{CH-CH} = 8.4$, CHCO); 7.55-7.60 (1H, m, CH–NH); 7.56 (2H, s, NH₂), 11.93 (1H, d, $J_{NH-CH} = 11.8$, NH); \mathbf{A}_E : 6.29 (1H, d, $J_{CH-CH} = 12.7$, CHCO); 7.70 (1H, s, NH₂); 7.91 (1H, t, $J_{CH-CH} = J_{CH-NH} = 13.0$, CHNH); 8.85 (1H, d, $J_{NH-CH} = 12.5$, NH); **B**: 2.89 (1H, dd, $J_{Ha-CH} = 5.0$, $J_{gem} = 17.5$, H-*a* (CH₂)); 3.23 (1H, dd, $J_{Hb-CH} = 7.0$, $J_{gem} = 17.5$, H-*b* (CH₂)); 5.12 (1H, m, H-3); 6.97 (1H, s, 4-NH); 7.46 (2H, m, H-8, 2-NH). ¹³C NMR spectrum, δ , ppm: \mathbf{A}_Z : 26.84 (C(CH₃)₃), 41.78 (C(CH₃)₃); 95.26 (CHCO); 142.25 (CH–NH); 204.85 (CO); \mathbf{A}_E : 100.55 (CHCO); 140.79 (CH–NH); 202.32 (CO); **B**: 43.48 (CH₂), 62.20 (C₍₃₎), 210.50 (CO). Found: *m*/*z* 282.1036 [M]⁺. C₁₃H₁₈N₂O₃S. Calculated: M = 282.1038.

2-(2-Methylpent-1-enylamino-3-oxo)benzenesulfonamide (3b). Yield 40%; yellowish crystals; mp 209°C. ¹NMR spectrum, δ , ppm (*J*, Hz): \mathbf{A}_E : 1.02 (3H, t, $J_{CH_2-CH_3} = 7.2$, CH₃); 1.75 (3H, s, CH₃C=C); 2.75 (2H, q, $J_{CH_2-CH_3} = 7.2$, CH₂); 7.73 (2H, s, NH₂); 8.05 (1H, d, $J_{CH-NH} = 11.6$, C<u>H</u>–NH); 8.76 (1H, d, $J_{NH-CH} = 12.0$, NH); \mathbf{A}_Z : 1.97 (3H, s, CH₃C=C); 7.35 (1H, d, $J_{CH-NH} = 11.6$, C<u>H</u>–NH); 7.45 (2H, s, NH₂); 11.80 (1H, d, $J_{NH-CH} = 11.6$, N<u>H</u>–CH); **B**: 2.99-3.05 (1H, s, CH₃C<u>H</u>); 4.80 and 5.00 (1H, dd, $J_{CH-CH} = 8.1$, $J_{CH-NH} = 12.0$, H-3); 6.90 and 6.92 (1H, s, 4-NH); 7.44 and 7.48 (1H, d, $J_{NH-CH} = 12.0$, 2-NH). ¹³C NMR spectrum, δ , ppm: \mathbf{A}_E : 8.87 (CH₃C=C); 9.42 (CH₃CH₂); 28.92 (CH₂); 112.73 (=C–CO); 136.91 (CH–NH); 198.22 (CO); \mathbf{A}_Z : 102.12 (=C–CO); 138.69 (CH–NH); 201.14 (CO); **B**: 48.39 and 48.66 (CH₃CH), 66.15 and 67.08 (C-3), 210.34 and 210.90 (CO). Found, *m*/*z* 268.0877 [M]⁺⁺. C₁₂H₁₆N₂O₃S. Calculated: M = 268.0882.

2-((2-Oxocyclohexylidenyl)methylamino)benzenesulfonamide (3c). Yield 51%; yellow crystals; mp 181°C. ¹H NMR spectrum, δ , ppm (*J*, Hz): \mathbf{A}_E : 1.70-1.80 (4H, m, 2H-4', 2H-5'); 2.24-2.32 (2H, m, 2H-3'); 2.35-2.45 (2H, m, 2H-6'); 7.73 (2H, s, NH₂); 7.92 (1H, dm, $J_{CH-NH} = 13.2$, CH); 8.78 (1H, d, $J_{NH-CH} = 12.8$, NH); \mathbf{A}_Z : 7.36 (1H, dm, $J_{CH-NH} = 11.6$, C<u>H</u>-NH); 7.45 (2H, s, NH₂); 11.99 (1H, d, $J_{NH-CH} = 11.6$, N<u>H</u>-CH); **B**₁: 4.94 (1H, dd, $J_{CH-NH} = 12.0$, $J_{CH-CH} = 8.0$, H-3); 6.78-6.82 (2H, m, H-5, NH-4); 7.38 (1H, d, $J_{NH-CH} = 12.0$, NH-2); **B**₂: 5.20 (1H, dd, $J_{CH-NH} = 12.5$, $J_{CH-CH} = 3.0$, H-3); 6.90 (1H, s, 4-NH); 7.43 (1H, d, $J_{CH-NH} = 13.0$, 2-NH). ¹³C NMR spectrum, δ , ppm: \mathbf{A}_E : 22.09 (C_(4')); 22.34 (C_(5')); 23.36 (C_(6')); 38.62 (C_(3')); 111.76 (C_(1')); 133.91 (CH-NH); 137.88 (C₍₂₎); 196.32 (CO); \mathbf{A}_Z : 108.03 (C_(1')); 139.52 (<u>C</u>H–NH); 198.67 (CO); **B**₁: 64.18 (C₍₃₎); 209.41 (CO); **B**₂: 63.56 (C₍₃₎); 208.51 (CO). Found: m/z 280.0884 [M]⁺. C₁₃H₁₆N₂O₃S. Calculated: M = 280.0882.

2-((2-Oxocyclopentylidenyl)methylamino)benzenesulfonamide (3d). Yield 45%; light yellow crystals; mp 175°C. ¹H NMR spectrum, δ , ppm (*J*, Hz): \mathbf{A}_E : 1.90-1.96 (2H, m, 2H-4'); 2.22-2.28 (2H, m, 2H-3'); 2.56 (2H, m, 2H-5'); 7.72 (1H, m, CH); 7.74 (2H, s, NH₂); 8.70 (1H, d, $J_{\text{NH-CH}} = 13.2$, N<u>H</u>); \mathbf{A}_Z : 7.44 (1H, dm, $J_{\text{CH-NH}} = 11.4$, C<u>H</u>–NH); 7.49 (2H, s, NH₂); 11.23 (1H, d, $J_{\text{NH-CH}} = 12.0$, N<u>H</u>–CH); \mathbf{B}_1 : 4.98 (1H, dd, $J_{\text{CH-NH}} = 12.0$, $J_{\text{CH-CH}} = 5.4$, H-3); 7.02 (1H, s, 4-NH); 7.34 (1H, d, $J_{\text{NH-CH}} = 12.0$, 2-NH); \mathbf{B}_2 : 5.10 (1H, dd, $J_{\text{CH-NH}} = 12.3$, $J_{\text{CH-CH}} = 2.7$, H-3); 6.82 (1H, s, 4-NH); 7.58 (1H, d, $J_{\text{CH-NH}} = 12.6$, 2-NH). ¹³C NMR spectrum, δ , ppm: \mathbf{A}_E : 19.32 (C_{(4'})); 24.91 (C_{(5'})); 38.35 (C_{(3'})); 113.71 (C_{(1'})); 129.97 (CH–NH); 204.12 (CO); \mathbf{A}_Z : 134.34 (CH–NH); 205.36 (CO); \mathbf{B}_1 : 65.17 (C₍₃₎); 216.40 (CO); \mathbf{B}_2 : 63.83 (C₍₃₎); 215.79 (CO). Found: *m*/*z* 266.0718 [M]⁺⁺. C₁₂H₁₄N₂O₃S. Calculated: M = 266.0725.

REFERENCES

- 1. O. Maloshitskaya, J. Sinkkonen, V. Alekseyev, K. Zelenin, and K. Pihlaja, *Tetrahedron*, **61**, 7294 (2005).
- 2. Ya. F. Freimanis, *The Chemistry of Enaminoketones, Enaminoimines, and Enaminothiones* [in Russian], Zinatne, Riga (1974), p. 58.